FINAL MITIGATION PLAN and AS-BUILT BASELINE REPORT UT to CANE CREEK RESTORATION SITE ALAMANCE COUNTY, NORTH CAROLINA (EEP Project No. 395)

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

November 2009

FINAL MITIGATION PLAN and AS-BUILT BASELINE REPORT UT to CANE CREEK RESTORATION SITE ALAMANCE COUNTY, NORTH CAROLINA (EEP Project No. 395)

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 20 Enterprise Street Suite 7 Raleigh, North Carolina 27607

Design Firm: URS Corporation 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560

November 2009

EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed restoration of streams and wetlands at the UT to Cane Creek Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream and wetland mitigation goals in the area. The Site is located in southwest Alamance County approximately 5 miles east of Liberty, North Carolina in United States Geological Survey Hydrologic Unit 03030002050050 (North Carolina Division of Water Quality Subbasin 03-06-04) of the Cape Fear River Basin. This Hydrologic Unit has been identified as a Targeted Local Watershed in NCEEP's *Cape Fear River Basin Restoration Priorities 2009*.

Prior to construction, the Site was characterized by pasture land utilized for livestock grazing. Land use practices including the maintenance and removal of riparian vegetation and hoof shear from livestock had resulted in degraded water quality, unstable channel characteristics (stream entrenchment, erosion, and bank collapse), and reduced storage capacity and floodwater attenuation. In addition, hydric soils were disturbed due to regular plowing and vegetation maintenance and hoof shear from livestock.

The goals and objectives of this project focus on improving local water quality, enhancing flood attenuation, and restoring aquatic and riparian habitat. These goals were accomplished by the following.

- 1. Reestablished stream stability and the capacity to transport watershed flows and sediment load by restoring stable channel morphology supported by natural instream habitat and grade/bank stabilization structures.
- 2. Reduced nonpoint source sedimentation and nutrient inputs into the Site by eliminating the acceleration of bank erosion as a result of land use activities, excluding livestock, and reestablishing a native riparian buffer greater than 50 feet in width.
- 3. Enhanced the capacity of the Site to mitigate flood flows by reconnecting the stream to the historic floodplain.

This project was constructed between March 17, 2008 and March 15, 2009. Final grading, stream structure installation, and site stabilization was completed by March 4, 2009, and planting of trees and shrubs was completed between March 11-15, 2009. As constructed, Site activities restored historic stream and wetland functions, which existed onsite prior to impacts from unrestricted livestock access, riparian and bank vegetation removal, and nutrient loading from surrounding pasture land. Stream construction of meandering, E-type stream channels resulted in 6783 linear feet of stream restoration. The removal of invasive species and subsequent planting with native riparian vegetation resulted in 1.3 acres of riparian riverine wetland enhancement and 2.0 acres of riparian riverine wetland preservation. Site activities provided 6783 Stream Mitigation Units and 1.1 riparian riverine Wetland Mitigation Units. The Site will be protected by a 50.75 acre permanent conservation easement held by the State of North Carolina. Baseline measurements/evaluations indicate that Site streams, wetlands, and vegetation compare favorably to plans as set forth in the detailed restoration plan and construction plans.

The UT to Cane Creek Restoration Site monitoring plan will entail analysis of the stream channel and riparian vegetation. Monitoring of restoration efforts will be performed for a minimum of 5 years or until success criteria are fulfilled.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	i
1.0	INTRODUCTION	. 1
1.2	Project Goals and Objectives	. 1
1.3	Project Structure, Restoration Type, and Approach	. 1
2.0	MONITORING PLAN	.2
2.1	Stream	.2
2.2	Vegetation	.2
3.0	SUCCESS CRITERIA	.2
3.1	Stream Success Criteria	
3.2	Vegetation Success Criteria	.2
4.0	MAINTENANCE AND CONTINGENCY	. 3
5.0	REFERENCES	.4

APPENDICES

A	ppendix	A.	General	Tables	and l	Figures

- Table 1. Site Restoration Structures and Objectives
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes Table
- Figure 1. Site Location Map
- Figure 2. Monitoring Plan View
- Appendix B. Baseline Morphology Tables
 - Tables 5A-5D. Baseline Morphology and Hydraulic Summary

Appendix C. Vegetation Data

 Table 6.
 Vegetation Plot Attribute Table

Table 7. Planted Woody and Herbaceous Species

Appendix D. As-built Construction Sheets

Sheets AB0-AB5. As-built Drawings

Sheets 1-11. As-built Survey

1.0 INTRODUCTION

1.1 Location and Setting

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed restoration of streams and wetlands at the UT to Cane Creek Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream and wetland mitigation goals in the area. The Site is located in southwest Alamance County approximately 5 miles east of Liberty, North Carolina in United States Geological Survey (USGS) Hydrologic Unit 03030002050050 (North Carolina Division of Water Quality Subbasin 03-06-04) of the Cape Fear River Basin (Figure 1, Appendix A). This Hydrologic Unit has been identified as a Targeted Local Watershed in NCEEP's *Cape Fear River Basin Restoration Priorities 2009*.

Directions to the Site:

- > From Raleigh, take US-64 West to exit 381 for NC-87 towards Spring Lake and Fayetteville
- Turn right on NC-87/Graham Road
- > Take a slight left onto Silk Hope Gum Springs Road/Silk Hope Road
- Turn right on Snow Camp Road
- > Turn left on Old Dam Road
- > The Site is located at the stream crossing between Wild Rose Road and Cocoa Road
- Latitude, Longitude of Site: 35.8644°N, 79.4800°W (NAD83/WGS84)

1.2 Project Goals and Objectives

The goals and objectives of this project focus on improving local water quality, enhancing flood attenuation, and restoring aquatic and riparian habitat. These goals were accomplished by the following.

- 1. Reestablished stream stability and the capacity to transport watershed flows and sediment load by restoring stable channel morphology supported by natural instream habitat and grade/bank stabilization structures.
- 2. Reduced nonpoint source sedimentation and nutrient inputs into the Site by eliminating the acceleration of bank erosion as a result of land use activities, excluding livestock, and reestablishing a native riparian buffer greater than 50 feet in width.
- 3. Enhanced the capacity of the Site to mitigate flood flows by reconnecting the stream to the historic floodplain.

1.3 Project Structure, Restoration Type, and Approach

Prior to construction, the Site was characterized by pasture land utilized for livestock grazing. Land use practices including the maintenance and removal of riparian vegetation and hoof shear from livestock had resulted in degraded water quality, unstable channel characteristics (stream entrenchment, erosion, and bank collapse), and reduced storage capacity and floodwater attenuation. In addition, hydric soils were disturbed due to regular plowing and vegetation maintenance and hoof shear from livestock.

As constructed, Site activities restored historic stream and wetland functions, which existed onsite prior to impacts from unrestricted livestock access, riparian and bank vegetation removal, and nutrient loading from surrounding pasture land. Stream construction of meandering, E-type stream channels resulted in 6783 linear feet of stream restoration. The removal of invasive species and subsequent planting with native riparian vegetation resulted in 1.3 acres of riparian riverine wetland enhancement and 2.0 acres of riparian riverine wetland preservation (Table 1, Appendix A). Planting occurred within 41 acres of the conservation easement, including constructed streambanks, floodplain, wetland enhancement areas, and uplands. The target natural community within uplands of the Site is Mixed-Mesic Hardwood Forest and within the remainder of the Site is Piedmont/Mountain Bottomland Forest (Schafale and Weakley 1990). Table 7

(Appendix C) outlines woody and herbaceous species planted within the Site. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 2-4 (Appendix A).

2.0 MONITORING PLAN

The UT to Cane Creek Restoration Site monitoring plan will entail analysis of the stream channel and riparian vegetation. Monitoring of restoration efforts will be performed for a minimum of 5 years or until success criteria are fulfilled. Locations of stream cross-sections and vegetation monitoring plots are depicted on Figure 2 (Appendix A).

2.1 Stream

After completion of Site construction, five reaches approximately 600 linear feet in length were monitored for geometric activity along the restored channel. In addition, 12 stream cross-sections were established and permanently monumented throughout the Site.

Annual fall monitoring will include development of channel cross-sections on riffles and pools, pebble counts, and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) water surface slope, and 7) stream substrate composition.

Baseline/as-built measurements, performed in September 2009, emulated the proposed channel morphology. Baseline data are included in Tables 5A-5D in Appendix B.

2.2 Vegetation

Following Site planting, 15 (10-meter by 10-meter) vegetation monitoring plots were established within the Site. During the first year, vegetation will receive a cursory, visual evaluation on a periodic basis to ascertain the degree of overtopping of planted elements by nuisance species. Subsequently, quantitative sampling of vegetation will be performed each year using the *CVS-EEP Protocol for Recording Vegetation Level 1-2 Plot Sampling Only* (Version 4.0) (Lee et al. 2006) in September of the first monitoring year and between June 1 and September 30 for each subsequent year until the vegetation success criteria are achieved. A photographic record of plant growth will be included in each annual monitoring report. Attributes of the vegetation plots are included in Table 6 in Appendix C.

3.0 SUCCESS CRITERIA

3.1 Stream Success Criteria

Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system. Annual monitoring will continue until success criteria are met and no less than two bankfull events have occurred, otherwise monitoring will continue until the second bankfull event has occurred.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

3.2 Vegetation Success Criteria

Success criteria have been established to verify that the vegetation component supports community elements necessary for forest development. Success criteria are dependent upon the density and growth of

characteristic forest species. An average density of 320 stems per acre must be surviving at the end of the third monitoring year. Subsequently, 290 stems per acre must be surviving at the end of year 4 and 260 stems per acre at the end of year 5.

If vegetation success criteria are not achieved, based on average density calculations from combined plots over the entire restoration area, supplemental planting may be performed with tree species approved by regulatory agencies. Supplemental planting will be performed as needed until achievement of vegetation success criteria.

4.0 MAINTENANCE AND CONTINGENCY

In the event that success criteria are not fulfilled, a mechanism for contingency will be implemented.

<u>Stream</u>

In the event that stream success criteria are not fulfilled, a mechanism for contingency will be implemented. Stream contingency may include, but may not be limited to 1) structure installation; 2) repair of dimension, pattern, and/or profile variables; and 3) bank stabilization. The method of contingency is expected to be dependent upon stream variables that are not in compliance with success criteria. Primary concerns, which may jeopardize stream success include 1) headcut migration through the Site, and/or 2) bank erosion.

Headcut Migration Through the Site

In the event that a headcut occurs within the Site (identified visually or through onsite measurements [i.e. bank-height ratios exceeding 1.4]), provisions for impeding headcut migration and repairing damage caused by the headcut will be implemented. Headcut migration may be impeded through the installation of in-stream grade control structures (rip-rap sill and/or log cross-vane weir) and/or restoring stream geometry variables until channel stability is achieved. Channel repairs to stream geometry may include channel backfill with coarse material and stabilizing the material with erosion control matting, vegetative transplants, and/or willow stakes.

Bank Erosion

In the event that severe bank erosion occurs at the Site resulting in elevated width-to-depth ratios, contingency measures to reduce bank erosion and width-to-depth ratio will be implemented. Bank erosion contingency measures may include the installation of cross-vane weirs and/or other bank stabilization measures. If the resultant bank erosion induces shoot cutoffs or channel abandonment, a channel may be excavated which will reduce shear stress to stable values.

Vegetation

If vegetation success criteria are not achieved based on average density calculations from combined plots over the entire restoration area, supplemental planting may be performed with tree species approved by regulatory agencies. Supplemental planting will be performed as needed until achievement of vegetation success criteria.

5.0 **REFERENCES**

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program. 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://www.nceep.net/services/lwps/cape_fear/RBRP%20Cape%20Fear%202008.pdf [November 20, 2009].
- Rosgen D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Army Corps of Engineers, United States Environmental Protection Agency, North Carolina Wildlife Resources Commission, North Carolina Division of Water Quality (USACE et al.). 2003. Stream Mitigation Guidelines.

Appendix A. General Tables and Figures

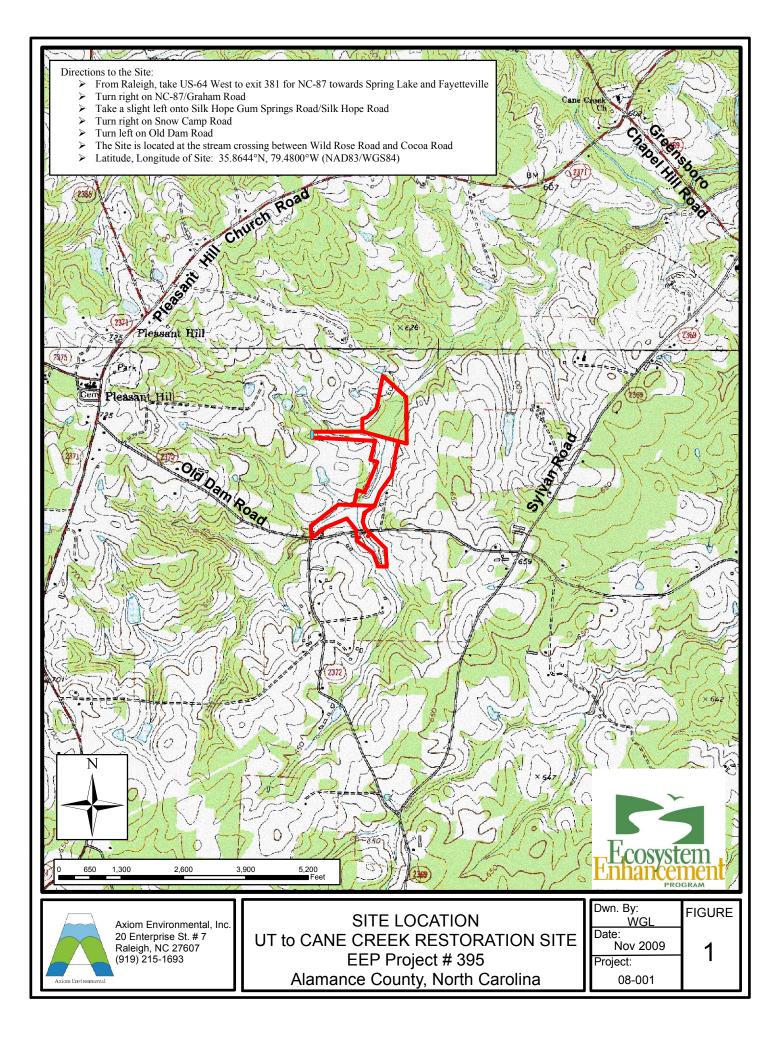
Table 1. Site Restoration Structures and ObjectivesTable 2. Project Activity and Reporting HistoryTable 3. Project Contacts TableTable 4. Project Attributes TableFigure 1. Site Location MapFigure 2. Monitoring Plan View

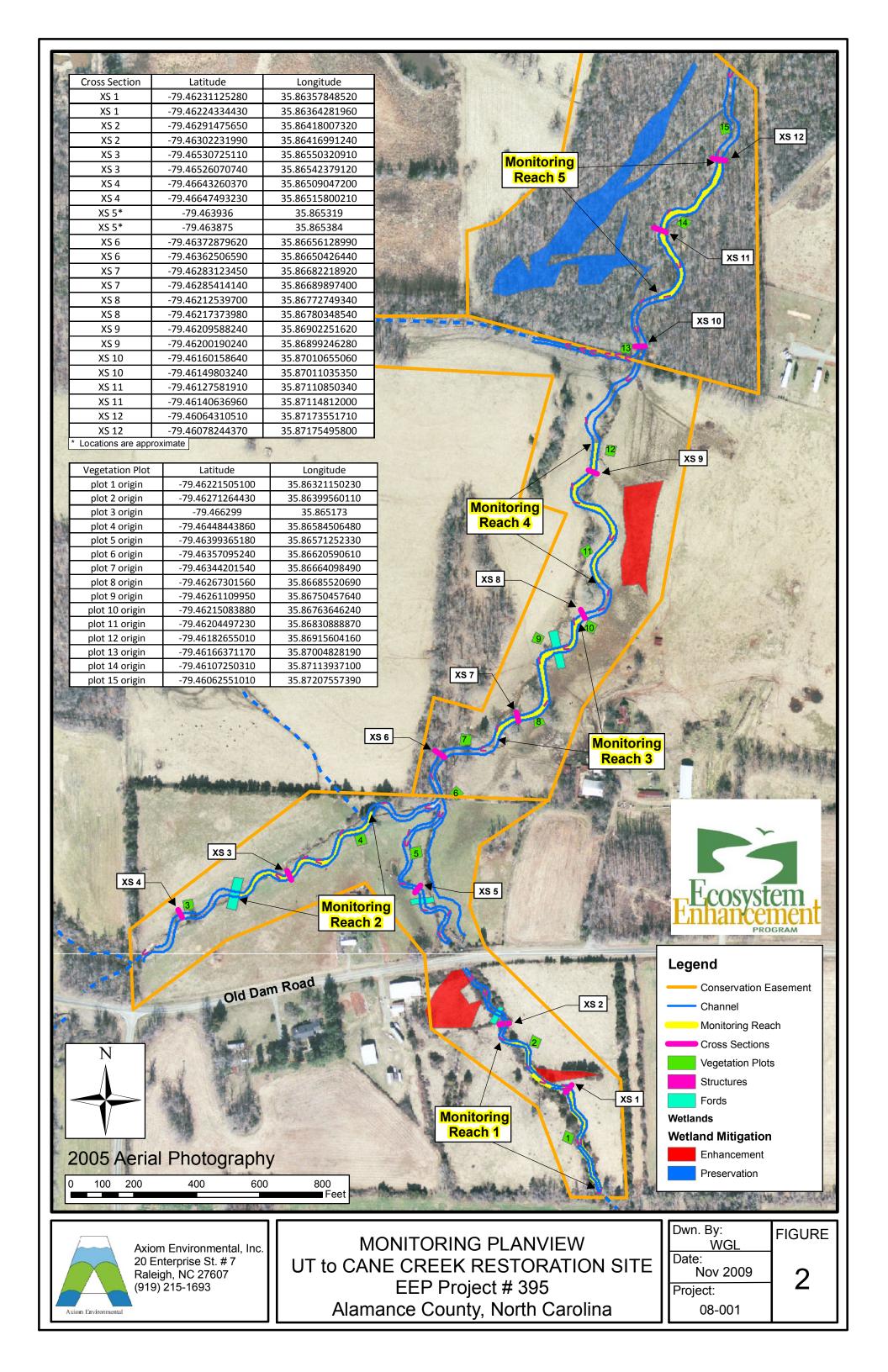
	lestor at	ion sei accai	es and Objecti	165		1
Restoration Segment/ Reach ID*	Stat	ion Range	Mitigation Type	Priority Approach	Linear Footage/ Acreage	Comment
Reach A	10+0	0-28+10.76	Restoration	Priority 1	1738.76**	Restoration of dimension
Reach B	28+10	.76-49+29.45	Restoration	Priority 1	2118.69	and profile through a
Reach C	49+29	45-61+24.03	Restoration	Priority 2	1194.58	combination of new
Reach D	100+0	0-113.57.31	Restoration	Priority 1	1357.31	location and in place
Reach E	200+0	0-203+73.25	Restoration	Priority 1	373.25	restoration.
Wetlands			Enhancement		1.3	Invasive species removal and planting with native forest vegetation.
Wetlands			Preservation		2.0	Invasive species removal.
			Component			
Restoration Level		Stream (lin	ear footage)	Riverine Riparian Wetland (acreage)		Planted Riparian Buffer (acreage)
Restoration	n	678	32.59	-	-	
Enhanceme	nt			1	.3	
Preservatio	n			2	.0	
Totals		6782.59	linear feet	3.3 a	acres	41 acres
Mitigation U	nits	6783	SMUs	1.1 W	VMUs	

	Table 1.	Site Restoration	Structures	and (Objectives
--	----------	-------------------------	------------	-------	------------

 * Locations of each reach are depicted on the As-built Drawings in Appendix A
 ** Constructed linear footage excludes the 72-foot corrugated metal pipe at Old Dam Road; therefore, the linear footage is shorter than stationing depicts.

Table 2. Project Activity and Reporting History


	Data Collection	Completion
Activity or Report	Complete	or Delivery
Restoration Plan		February 2006
Construction Completion		March 2009
Site Planting		March 2009
As-built Drawings	July-October 2008	July 2009
Mitigation Plan		October 2009


Table 3. Project Contacts Table

Designer	URS Corporation
	1600 Perimeter Park Drive, Suite 400
	Morrisville, North Carolina 27560
	Kathleen McKeithan (919) 461-1597
Construction Contractor	River Works, Inc.
	8000 Regency Parkway, Suite 200
	Cary, North Carolina 27511
	Will Pederson (919) 459-9001
Conservation Easement Contractor	Landmark Surveying, Inc.
	109 E. Harden Street
	Graham, North Carolina 27253
	(336) 229-6275
As-built Surveying Contractor	Level Cross Surveying, PLLC
	668 Marsh County Lane
	Randleman, North Carolina 23717
	Sherri Willard (336) 495-1713

et County	Alam			1	
c Region					
		· · · · ·			
Ũ					
	V				
	Yes				
	t Attribute Tab				
			Reach D	Reach E	
	1333	1640		282	
	third	third		second	
	2118.69	1194.58		373.25	
	perennial	perennial		perennial	
16-28	16-28			16-28	
				C, NSW	
No	No	No	No	No	
No	No	No	No	No	
	50.75	50.75	50.75	50.75	
41	41	41	41	41	
Degraded	Degraded E4	Degraded E4	Degraded	Degraded	
E4	U	C	E4	E4	
E4	E4	E4	E4	E4	
VIII	VIII	VIII	VIII	VIII	
0.0083	0.0041	0.0045	0.0046	0.0156	
R3UB1	R3UB1	R3UB1	R3UB1	R3UB1	
No	No	No	No	No	
No	No	No	No	No	
Tirzah s					
	-				
		49.8			
		31.4			
		9.9			
		4.6			
		2.0			
		0.9			
		0.6			
		0.4			
		0.4			
	c Region coregion ver Basin igit HUC Subbasin n Extent? RC Class nt fenced gn phase Componen Reach A 390 first 1738.76 perennial 16-28 C, NSW No S0.75 41 Degraded E4 E4 E4 VIII 0.0083 R3UB1 No No Tirzah s	c Region coregion ver Basin igit HUC Subbasin n Extent? Yes RC Class nt fenced gn phase Component Attribute Tab Reach A Reach B 390 1333 first third 1738.76 2118.69 perennial perennial 16-28 16-28 C, NSW C, NSW No No No No No No 50.75 50.75 41 41 Degraded Degraded E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	c Region Piedmo ccoregion Carolina Sla ver Basin Cape Fe igit HUC 0303000203 Subbasin 03-06-0 n Extent? Yes-Targeted Loca RC Class Warm nt fenced 100 % gn phase No Component Attribute Table Reach C 390 1333 1640 first third third 1738.76 2118.69 1194.58 perennial perennial perennial first third third 16-28 16-28 16-28 C, NSW C, NSW C, NSW No No No No No	c Region Piedmont coregion Carolina Slate Belt ver Basin Cape Fear igit HUC 03030002050050 Subbasin 03-06-04 n Extent? Yes-Targeted Local Watershed RC Class Warm nt fenced 100 % gn phase No Component Attribute Table Reach A Reach B Reach C Reach D 390 1333 1640 892 first third third third 1738.76 2118.69 1194.58 1357.31 perennial perennial perennial 16-28 16-28 16-28 16-28 C, NSW C, NSW C, NSW C, NSW No No No No No No No No No No No No No No No No No S0.75 50.75 50.75 50.75 41 41 41 41 Degraded Degraded E4 Degraded E4 C, NSW No	

Table 4. Project Attribute Table

Appendix B. Baseline Morphological Tables

Tables 5A-5D. Baseline Morphology and Hydraulic Summary

UT to Cane Creek - EEP Project Number 395	Vumber 395															
Parameter		Ē	F		-			F								
	USGS Gage Data	Cond	Pre-Existing Condition Reach	tıng teach 1	Proje S	Project Keterence Stream #1	ence.	Proje Si	Project Keterence Stream #2	rence 2	Desi	Design Reach 1	ch 1	As-bi	As-built Reach 1	ch 1
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is			11.6			11.2			11			10			12.4
Floodprone Width (ft)	unavailable for this			65			100			105			65			150
BF Cross Sectional Area (ft2)	project			14.3			10.1			16.2			11			6
BF Mean Depth (ft)				1.2			0.9			1.5			1.1			0.7
BF Max Depth (ft)				1.6			1.7			2			1.5			1.6
Width/Depth Ratio				9.4			12.4			7.5			9.1			17.1
Entrenchment Ratio				5.6			8.9			9.5			6.5			12.1
Bank Height Ratio				1.2			1.0			1.4			1.0			1.0
Wetted Perimeter(ft)				===						===			===			13.1
Hydraulic radius (ft)				===						===			===			0.7
Pattern																
Channel Beltwidth (ft)		20	50		15	50		50	77		35	70		24	64	46
Radius of Curvature (ft)		40	385		6	26		11	27		23	42		16	68	29
Meander Wavelength (ft)		80	460		29	57		29	96		40	140		74	198	121
Meander Width ratio		1.7	4.3		1.3	4.5		4.5	7.0		3.5	7.0		6.0	16.0	9.8
Profile																
Riffle length (ft)		===	===	===	===	===	===	===	===	===	===	===		5	66	17
Riffle slope (ft/ft)				0.0080		_	0.0073			0.0112			0.0065	0.0014	0.0212	0.0066
Pool length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	12	33	20
Pool spacing (ft)		100	240		15	87		7	95		13	66		39	113	70
Substrate																
d50 (mm)				===			===			===			===			20.9
d84 (mm)				===			===			===			===			63
Additional Reach Parameters																
Valley Length (ft)			1375			===			===			1379			1379	
Channel Length (ft)			1430			===			===			1737			1811	
Sinuosity			1.04			1.24			1.62			1.26			1.31	
Water Surface Slope (ft/ft)			0.0080	0		0.0046			0.0008			0.0043			0.0066	
BF slope (ft/ft)			===			===			===			===			===	
Rosgen Classification		Ō	Degraded E4	1 E4		E4			E4			E4			C4	

Table 5A. Baseline Morphology and Hydraulic Summary Reach 1 UT to Cane Creek - FFP Project Number 305

UI to Cane Creek - EEP Project Number 393	cke room															
Parameter		, d	1	~ ~ ~	Ducto	Dof D		D	TD P.F.							
	USGS Gage Data	Cond	rre- ьх изипg Condition Reach 2	ıng each 2	S1 S1	rroject keierence Stream #1	rence 1	St	rroject kererence Stream #2	rence 2	Desi	Design Reach 2	ch 2	As-b	As-built Reach 2	ch 2
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is			13.8			11.2			11			14			8.6
Floodprone Width (ft)	unavailable for this			150			100			105			100			150
BF Cross Sectional Area (ft2)	project			27.4			10.1			16.2			24			6.1
BF Mean Depth (ft)				2.0			0.9			1.5			1.7			0.7
BF Max Depth (ft)				2.9			1.7			2			2.1			1.2
Width/Depth Ratio				0.7			12.4			7.5			8.2			12.1
Entrenchment Ratio				10.9			8.9			9.5			7.1			17.4
Bank Height Ratio				1.1			1.0			1.4			1.0			1.0
Wetted Perimeter(ft)				===			===			===			===			9.3
Hydraulic radius (ft)				===			===			===			===			0.6
Pattern																
Channel Beltwidth (ft)		20	40		15	50		50	77		49	98		33	61	44
Radius of Curvature (ft)		22	20		6	26		11	27		32	58		19	45	36
Meander Wavelength (ft)		80	540		29	57		29	96		56	140		122	159	144
Meander Width ratio		1.4	2.9		1.3	4.5		4.5	7.0		3.5	7.0		14.0	19.0	17.0
Profile																
Riffle length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	6	54	13
Riffle slope (ft/ft)				0.0044			0.0073			0.0112			0.0055	***	***	***
Pool length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	15	84	22
Pool spacing (ft)		31	295		15	87		2	95		19	93		64	109	82
Substrate																
d50 (mm)				===			===			===			===			0.4
d84 (mm)				===			===			===			===			11
Additional Reach Parameters																
Valley Length (ft)			1986			===			===			1049			1121	
Channel Length (ft)			2065			===			===			1322			1357	
Sinuosity			1.04			1.24			1.62			1.26			1.21	
Water Surface Slope (ft/ft)			0.0044			0.0046			0.0008			0.0037			***	
BF slope (ft/ft)			===			===			===			===			===	
Rosgen Classification		ă	Degraded E4	E4		E4			Е4			E4			E/C5	

Table 5B. Baseline Morphology and Hydraulic SummaryReach 2UT to Cane Creek - EEP Project Number 395

*** No water in channel during as-built measurments

UT to Cane Creek - EEP Project Number 395	Vumber 395															
Parameter		ď	Dro Vrietina		Droio	Duciont Defension	0040	Droiod	Draiaat Dafaranaa	0040.						
	USGS Gage Data	Conc	Condition Reach 5	ung each 5	St	stream #1		St	stream #2		Des	Design Reach 5	ch 5	As-b	As-built Reach 5	ch 5
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is			20.3			11.2			11			18	14.5	20.6	15.9
Floodprone Width (ft)	unavailable for this			300			100			105			300	150.0	150.0	150.0
BF Cross Sectional Area (ft2)	project			42.9			10.1			16.2			38	22.9	25.7	24.5
BF Mean Depth (ft)				2.1			0.9			1.5			2.1	1.2	1.6	1.6
BF Max Depth (ft)				2.9			1.7			2			2.7	2.0	2.6	2.4
Width/Depth Ratio				9.6			12.4			7.5			8.5	9.2	17.3	9.8
Entrenchment Ratio				14.8			8.9			9.5			16.7	7.3	10.3	9.4
Bank Height Ratio				1.6			1.0			1.4			1.0	1.0	1.0	1.0
Wetted Perimeter(ft)				===			===			===			===	15.3	21.1	17.1
Hydraulic radius (ft)				===			===			===			===	1.2	1.5	1.5
Pattern																
Channel Beltwidth (ft)		23	91		15	50		50	77		63	126		34	104	82
Radius of Curvature (ft)		19	34		6	26		11	27		41	75		33	06	54
Meander Wavelength (ft)		66	150		29	57		29	96		72	180		124	303	156
Meander Width ratio		1.1	4.5		1.3	4.5		4.5	7.0		3.5	7.0		7.8	19.1	9.8
Profile																
Riffle length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	12	78	33
Riffle slope (ft/ft)				0.0029		0	0.0073			0.0112			0.0063	0.0000	0.0238	0.0036
Pool length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	15	54	28
Pool spacing (ft)		74	220		15	87		2	95		24	119		58	201	83
Substrate																
d50 (mm)				===			===			===			===			16
d84 (mm)				===			===			===			===			32
Additional Reach Parameters																
Valley Length (ft)			1112			===			===			1077			962	
Channel Length (ft)			1435			===			===			1174			1194	
Sinuosity			1.29			1.24			1.62			1.09			1.24	
Water Surface Slope (ft/ft)			0.0035			0.0046			0.0008			0.0041			0.0023	
BF slope (ft/ft)			===			===			===			===			===	
Rosgen Classification		D	Degraded E4	E4		E4			E4			E4			E/C4	

Table 5D. Baseline Morphology and Hydraulic SummaryReach 5UT to Cane Creek - EEP Project Number 395

UT to Cane Creek - EEP Project Number 395	umber 395															
Parameter		١d	Pre-Existing	ing	Droio	Droioot Reference	ono.	Droiod	Project Reference	ouu.						
	USGS Gage Data	Cond	Condition Reach 3 and 4	each 3	Ś	Ject Nelei Stream #1	- I	St	stream #2		Design	Reach	3 and 4	Design Reach 3 and 4 As-built Reach 3 and 4	Reach	and 4
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is			16			11.2			11			16	15.2	18.3	17.8
Floodprone Width (ft)	unavailable for this			300			100			105			200	150.0	150.0	150.0
BF Cross Sectional Area (ft2)	project			34.2			10.1			16.2			32	22.2	26.3	24.4
BF Mean Depth (ft)				2.1			0.9			1.5			2.0	1.2	1.7	1.3
BF Max Depth (ft)				3.3			1.7			2			2.4	2.0	2.5	2.3
Width/Depth Ratio				7.5			12.4			7.5			8.0	8.8	14.3	13.7
Entrenchment Ratio				18.8			8.9			9.5			12.5	8.2	9.9	8.4
Bank Height Ratio				1.3			1.0			1.4			1.0	1.0	1.0	1.0
Wetted Perimeter(ft)				===			===			===			===	16.6	19.3	18.6
Hydraulic radius (ft)				===						===			===	1.2	1.6	1.3
Pattern																
Channel Beltwidth (ft)		18	148		15	50		50	77		56	112		15	100	63
Radius of Curvature (ft)		23	32		6	26		11	27		37	66		23	72	45
Meander Wavelength (ft)		120	340		29	57		29	96		64	160		105	274	182
Meander Width ratio		1.1	9.2		1.3	4.5		4.5	7.0		3.5	7.0		5.9	15.4	10.2
Profile																
Riffle length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	5	136	33
Riffle slope (ft/ft)				0.0070			0.0073			0.0112			0.0049	0.0000	0.0108	0.0033
Pool length (ft)		===	===	===	===	===	===	===	===	===	===	===	===	10	54	31
Pool spacing (ft)		29	395		15	87		2	95		21	106		58	180	113
Substrate										-						
d50 (mm)				===			===			===			===			0.6
d84 (mm)				===			===			===			===			16
Additional Reach Parameters																
Valley Length (ft)			1541			===			===			1562			1669	
Channel Length (ft)			2065			===			===			1984			2119	
Sinuosity			1.34			1.24			1.62			1.27			1.27	
Water Surface Slope (ft/ft)			0.0031			0.0046			0.0008			0.0032			0.0031	
BF slope (ft/ft)			===			===			===			===			===	
Rosgen Classification		Ō	Degraded E4	E4		E4			E4			E4			E/C5	

Table 5C. Baseline Morphology and Hydraulic SummaryReach 3 and 4UT to Cane Creek - EEP Project Number 395

Appendix C. Vegetation Data

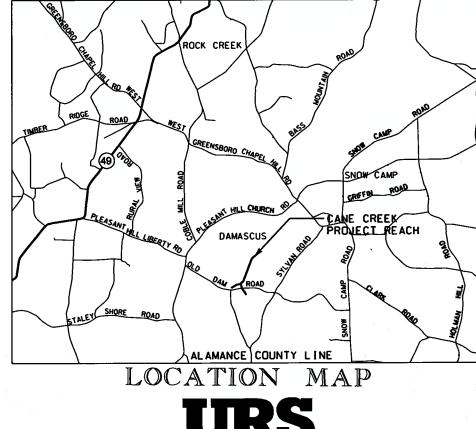
Table 6. Vegetation Plot Attribute TableTable 7. Planted Woody and Herbaceous Species

Plot	Community	Planting Zone ID	Reach ID	Associated	Method	CVS
ID	Туре			Gauge		Level
1		streamside/floodplain	Reach A-Monitoring Profile 1	e	t	al.
2	est	streamside/floodplain	Reach A-Monitoring Profile 1	at the	ed	et a
3	For	streamside/floodplain	Reach D-Monitoring Profile 2		tor 2 H	ee
4	pu	streamside/floodplain	Reach D-Monitoring Profile 2	gauges	monitored <i>stocol for</i> <i>sel 1-2 Pla</i>	(F
5	nlaı	floodplain	Reach A	gaı	oto vel	()
6	ton	floodplain	Reach B-Monitoring Profile 3	no	be Pra	.4
7	3ot	streamside/floodplain	Reach B-Monitoring Profile 3	e	will EEP_	ion
8	in I	streamside/floodplain	Reach B-Monitoring Profile 3	sre al Site		(Versic 2006)
9	nta	floodplain	Reach B-Monitoring Profile 4	there Sit	ots 7S-1	5 <u>S</u>
10	no	streamside/floodplain	Reach B-Monitoring Profile 4		CU CV	h
11	W/	streamside/floodplain	Reach B-Monitoring Profile 4	abl	the lon	On
12	ont	streamside/floodplain	Reach C-Monitoring Profile 5	ollic	etati ng t	
13	Piedmont/Mountain Bottomland Forest	streamside/floodplain	Reach C-Monitoring Profile 5	Not applicable,	Vegetation using the	Sampling
14	Pie	streamside/floodplain	Reach C-Monitoring Profile 5	lot	Veg usii Recoi	łw
15		streamside/floodplain	Reach C-Monitoring Profile 5	N	1	Sa

Table 6. Vegetation Plot Attributes Data

Planting Zone	Common Name	Scientific Name	Form	Number of Stem
	Black willow	Salix nigra		1800
Streamside	Elderberry	Sambucus Canadensis	Live Stake	2700
Streamsfide	Silky dogwood	Cornus amomum		2700
	Silky willow	Salix sericea		1800
	Silky dogwood	Cornus amomum	Live Stakes	100
	Tag alder	Alnus serrulata	Containerized	100
Wetland Enhancement	Buttonbush	Cephalanthus occidentalis	Bare Root	113
	Elderberry	Sambucus Canadensis	Bare Root	100
	Silky willow	Salix sericea	Live Stakes	75
	Swamp rose	Rosa palustris	Containerized	32
	Black gum	Nyssa sylvatica	Bare Root	300
	Sugarberry	Celtis laevigata	Bare Root	400
	Willow oak	Quercus phellos	Bare Root	1300
	Green ash	Fraxinus pennsylvanica	Bare Root	1400
	River birch	Betula nigra	Bare Root	500
	Silky dogwood	Cornus amomum	Live Stakes	175
	Tag alder	Alnus serrulata	Containerized	40
	Ironwood	Carpinus caroliniana	Bare Root	1000
	Sycamore	Platanus occidentalis	Bare Root	600
	Buttonbush	Cephalanthus occidentalis	Bare Root	437
	Hazelnut	Corylus americana	Containerized	500
Floodplain	Black walnut	Juglans nigra	Bare Root	1300
	Cherrybark oak	Quercus pagoda	Bare Root	300
	Swamp chestnut oak	Quercus michauxii	Bare Root	400
	Flowering dogwood	Cornus florida	Bare Root	80
	Red chokeberry	Aronia arbutifolia	Containerized	165
	Tulip poplar	Liriodendron tulipifera	Bare Root	1000
	Serviceberry	Amelanchier arbutifolia	Containerized	200
	Sweetbay magnolia	Magnolia virginiana	Bare Root	100
	Ninebark	<i>Physocarpus</i> sp.	Live Stakes	100
	Spicebush	Lindera benzoin	Containerized	106
	Blueberry	Vaccinium sp.	Containerized	15
	Coralberry	Symphoricarpos orbiculatus	Containerized	200
Upland Slope	Persimmon	Diospyros virginiana	Bare Root	600
	Southern red oak	Quercus falcate	Bare Root	500
	Black oak	Quercus velutina	Containerized	1300
	Flowering dogwood	Cornus florida	Bare Root	70
	Eastern red cedar	Juniperus virginiana	Bare Root	400
	Hackberry	Celtis occidentalis	Bare Root	1000
				Percent of
		** 1. 1		Composition
Herbaceous	Swamp sunflower	Helianthus angustifolius		8
	Ironweed	Veronica noveboracensis		5
	Swamp milkweed	Asclepias incarnate		2
	Joe-pye-weed	Eupatorium fistulosus		2
	Tearthumb	Polygonum sagittatum		5
	Bushy beard grass	Andropogon glomeratus		8
Seed Mixture	Deertongue	Panicum clandestinum	Permanent Seeding	12
within	Switchgrass	Panicum virgatum	at a rate of 15	7
Streamside and	Soft rush	Juncus effusus	lbs/acre	7
Floodplain Planting Zones	Showy tickseed sunflower	Bidens aristosa		12
	Swamp rose	Rosa palustris		5
	Fox sedge	Carex vulpinoidea		12
	Leafy bullrush	Scirpus polyphyllus		5
	Sneezeweed	Helenium autumnale		5
	Virginia wild rye	Elymus virginicus		5

Table 7. Planted Woody and Herbaceous Vegetation


Appendix D. As-built Construction Drawings

Sheets AB0-AB5. As-built Drawings Sheets 1-11. As-built Survey

AS-BUILT DRAWINGS FOR UNNAMED TRIBUTARY TO CANE CREEK STREAM RESTORATION STREAM DATA PROJECT EXISTING LENGTH (FT) 6330 LF 50 25 PROPOSED LENGTH (FT) 6440 LF

ALAMANCE COUNTY, NORTH CAROLINA REACH A STA. 10+00 LAT. 35° 51' 36"N 79° 27' 38"W

1600 Perimeter Park Drive, Suite 400 Morrisville, North Carolina 27560 Phone (919)461-1100 Fax (919)461-1415 NC Lic.# C-2243

PROJECT

DISTURBED AREA - 41 ACRES

RESTORED LENGTH (FT)

PROPOSED STREAM

CLASSIFICATION

6857 LF

E∢

SHEET NO. DESCRIPTION

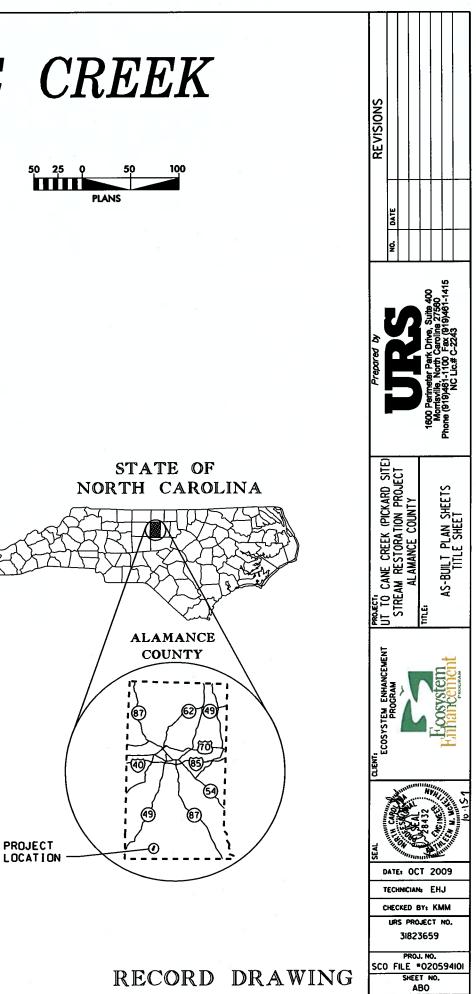
AB0	TITLE	SHEET
AB1 - AB5	PLAN	SHEETS

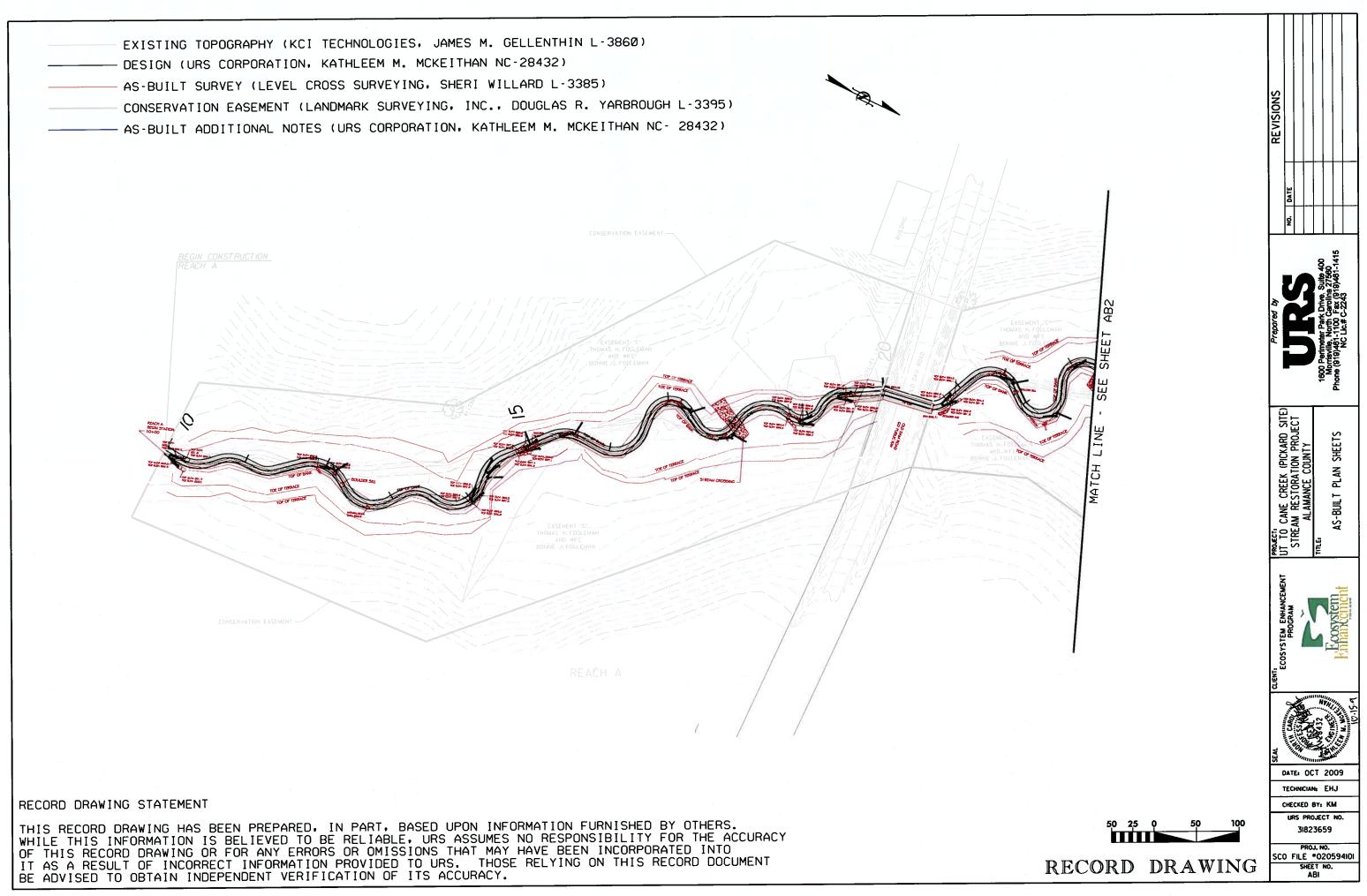
SITE DATA

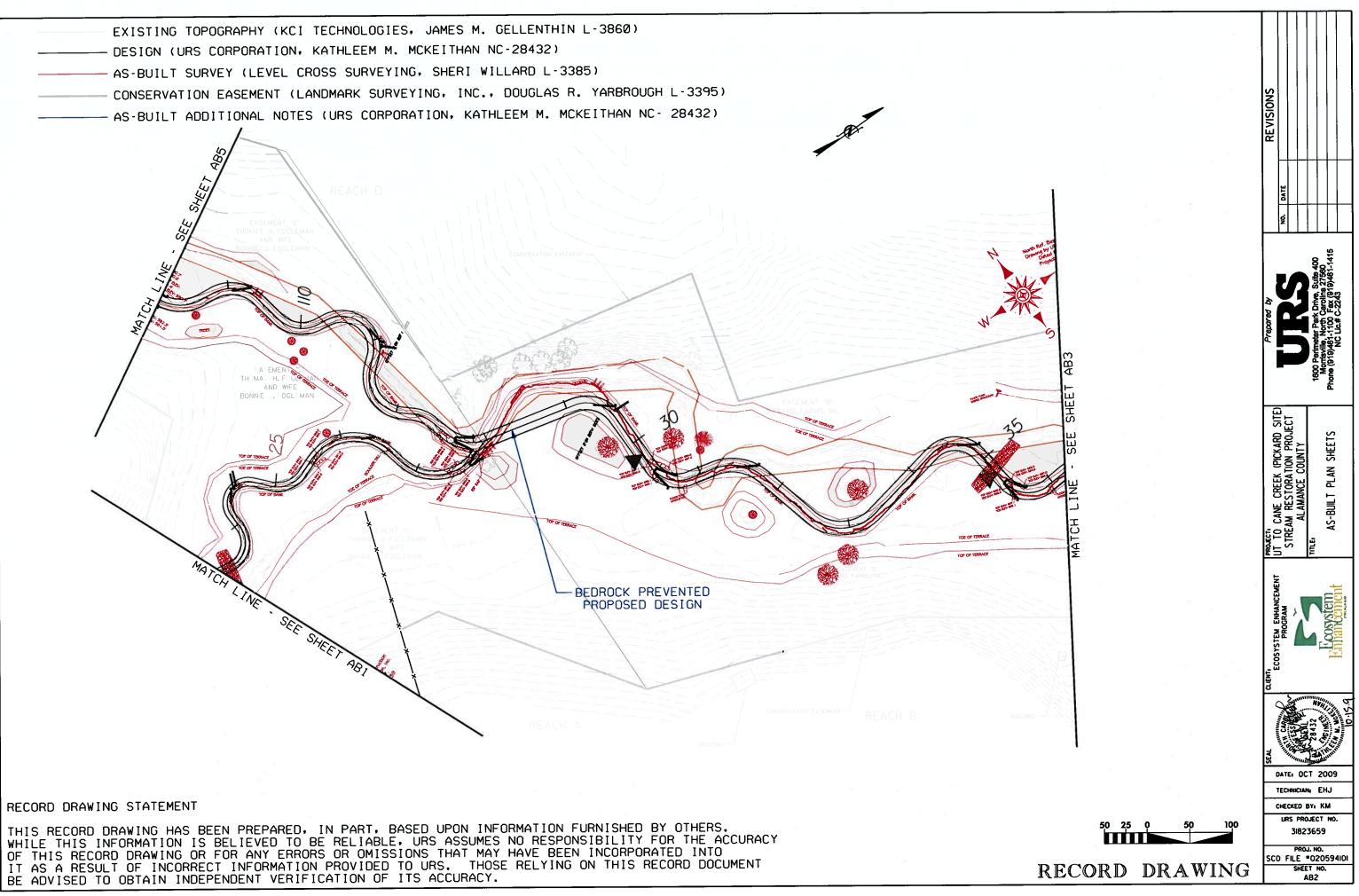
ECOSYSTEM ENHANCEMENT PROGRAM 1652 MAIL SERVICE CENTER RALEIGH, NC 27699-1652 CONTACT: PERRY SUGG PHONE: 919-715-1359

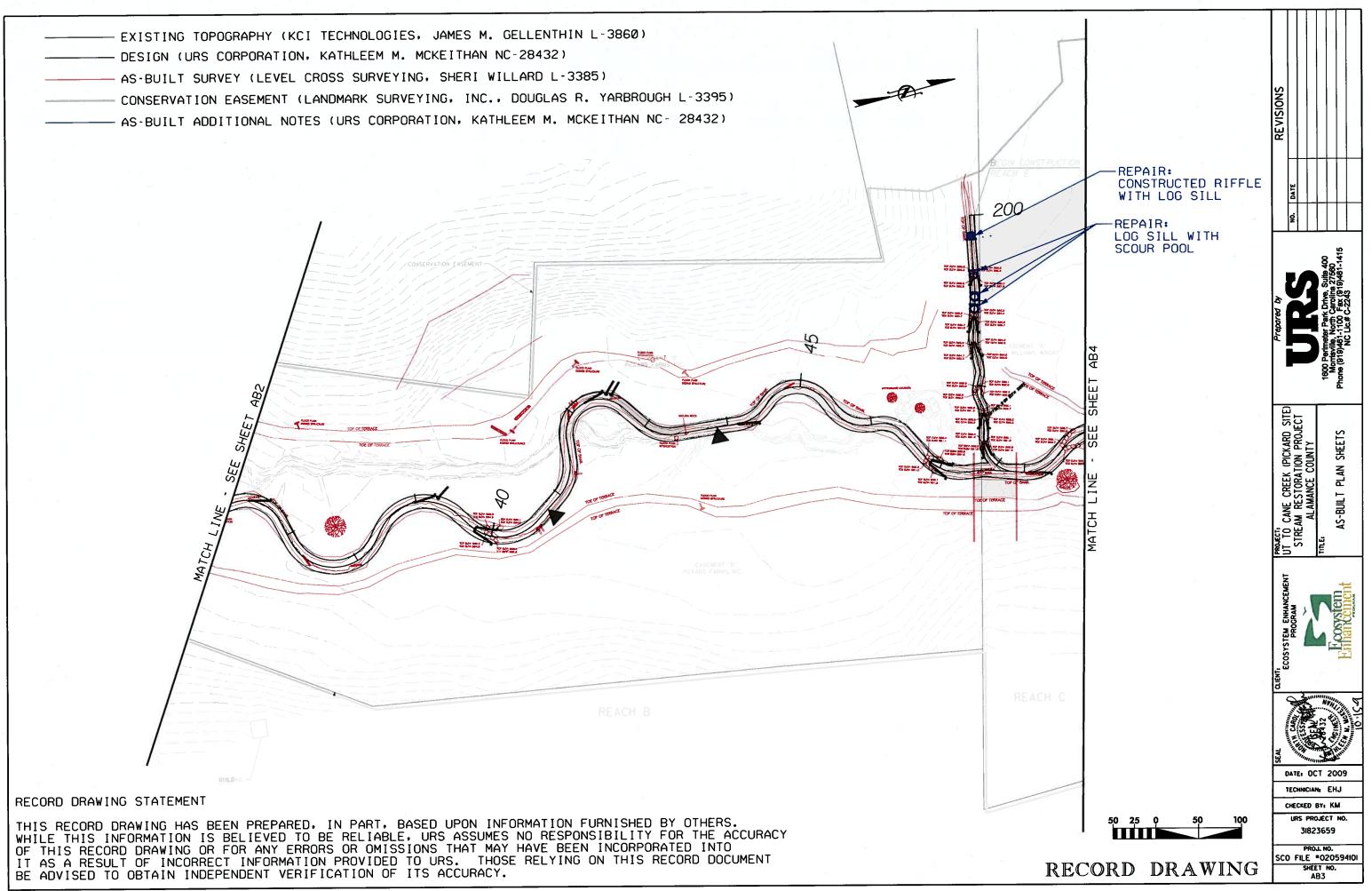
URS CORPORATION - NORTH CAROLINA 1600 PERIMETER PARK DRIVE SUITE 400 MORRISVILLE, NC 27560 CONTACT: KATHLEEN MCKEITHAN PHONE: 919-461-1597

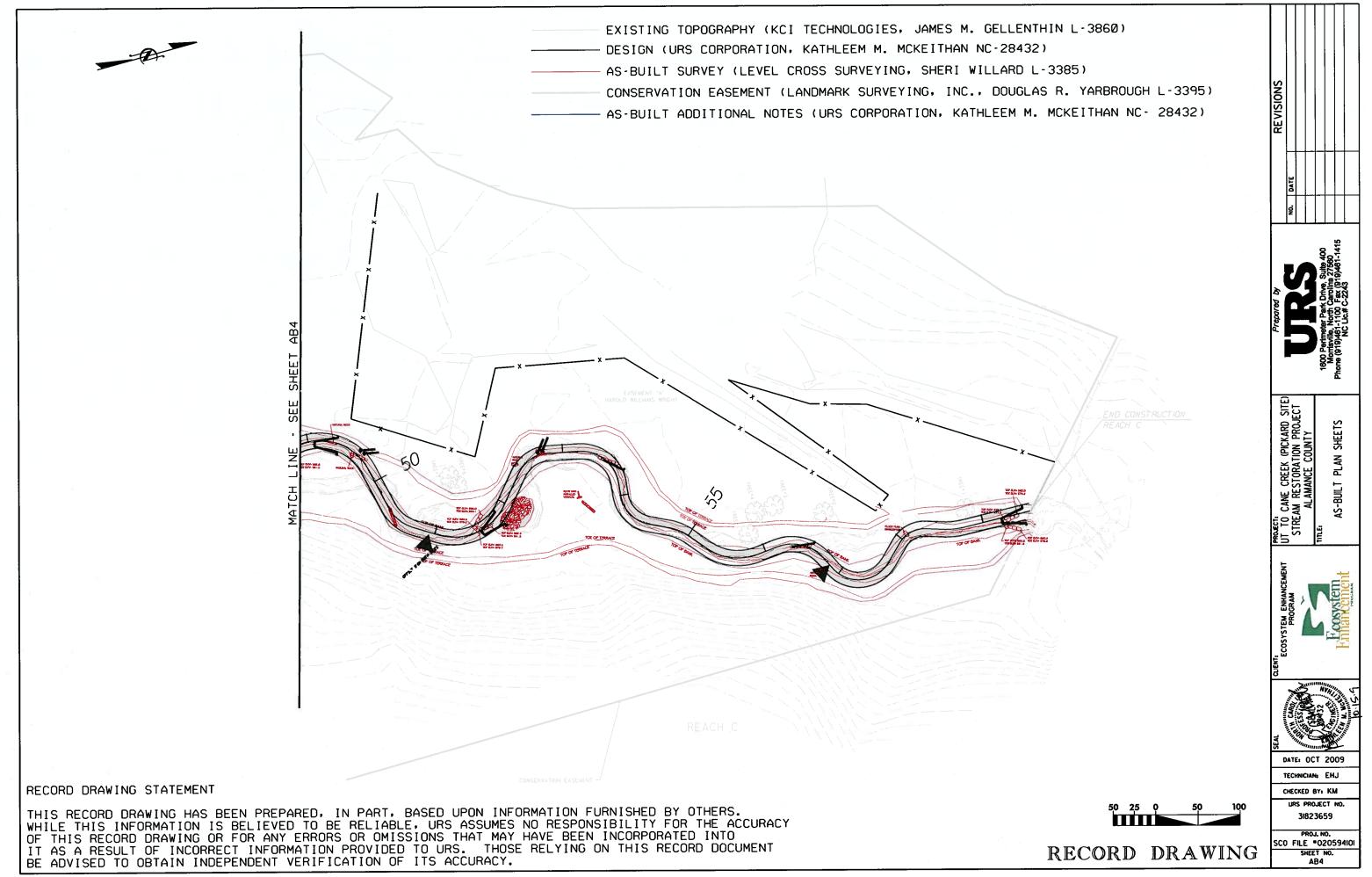
EXISTING SURVEY PREPARED BY:

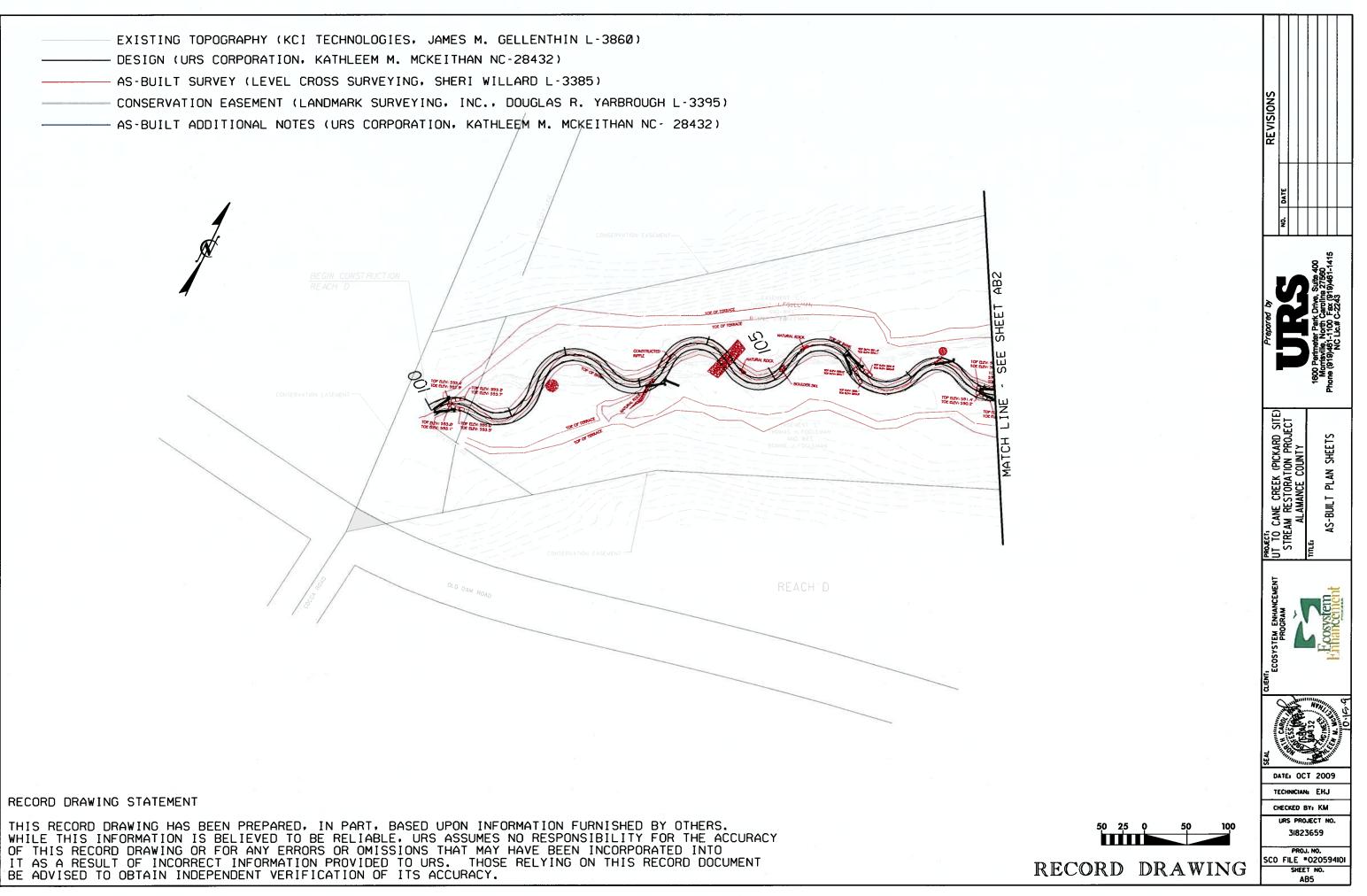

KCI TECHNOLOGIES 4601 SIX FORKS ROAD, RALEIGH, NC 27609 CONTACT: JAMES M. GELLENTHIN (L-3860) PHONE: 919-783-9214 SEALED L-3860

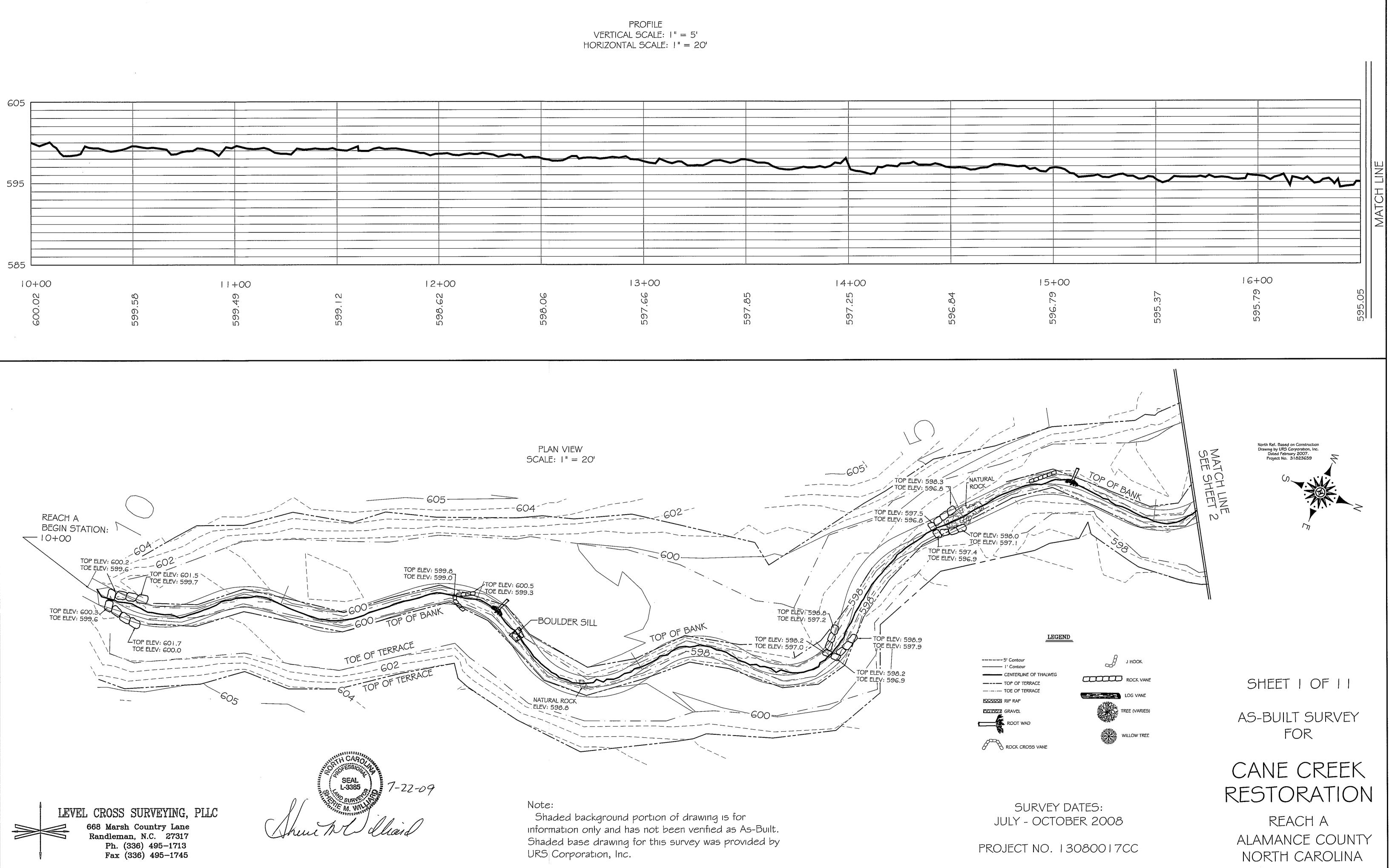

CONSERVATION EASEMENT PREPARED BY:

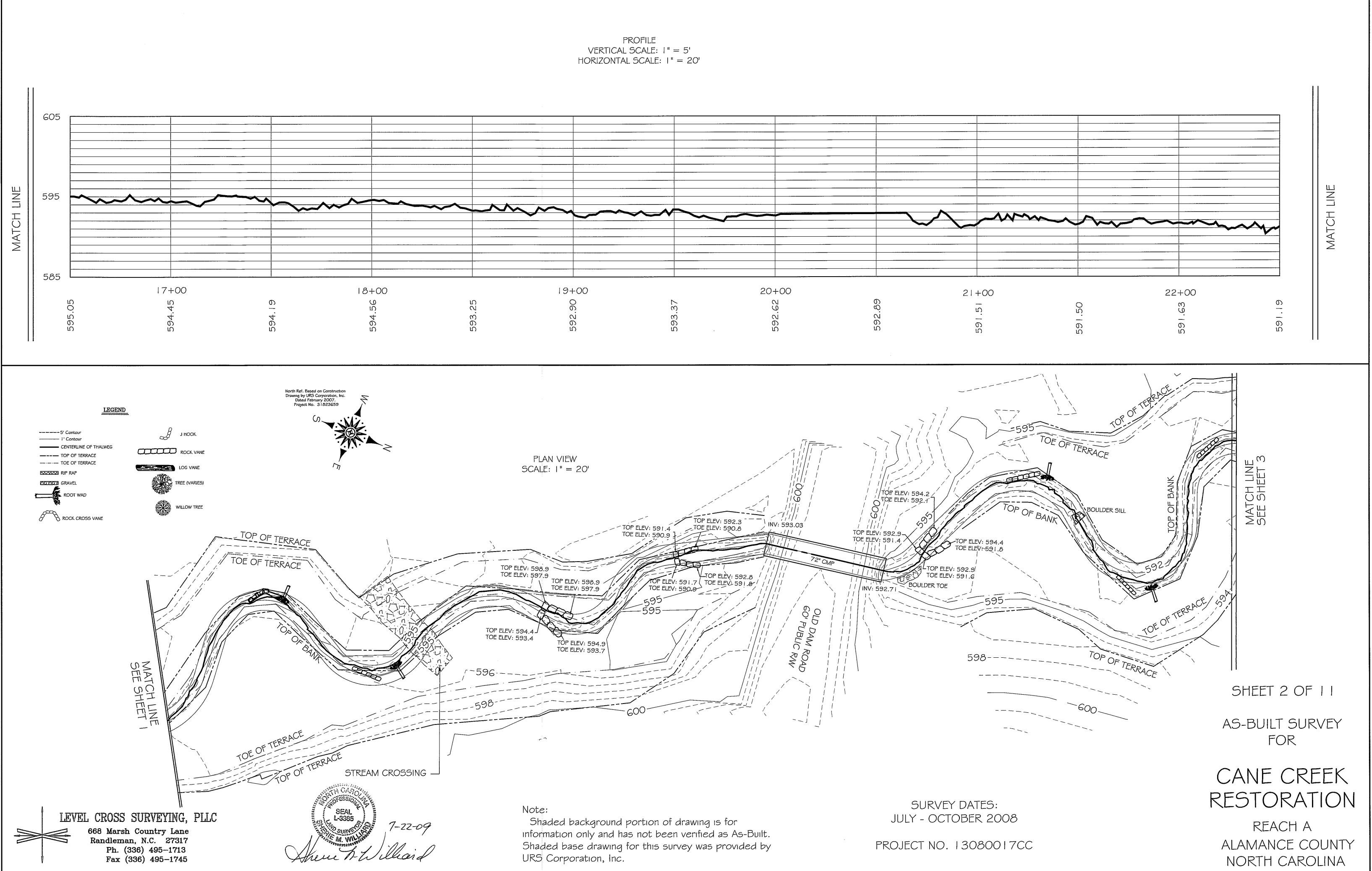

LANDMARK SURVEYING, INC. PHONE: 336-229-6275

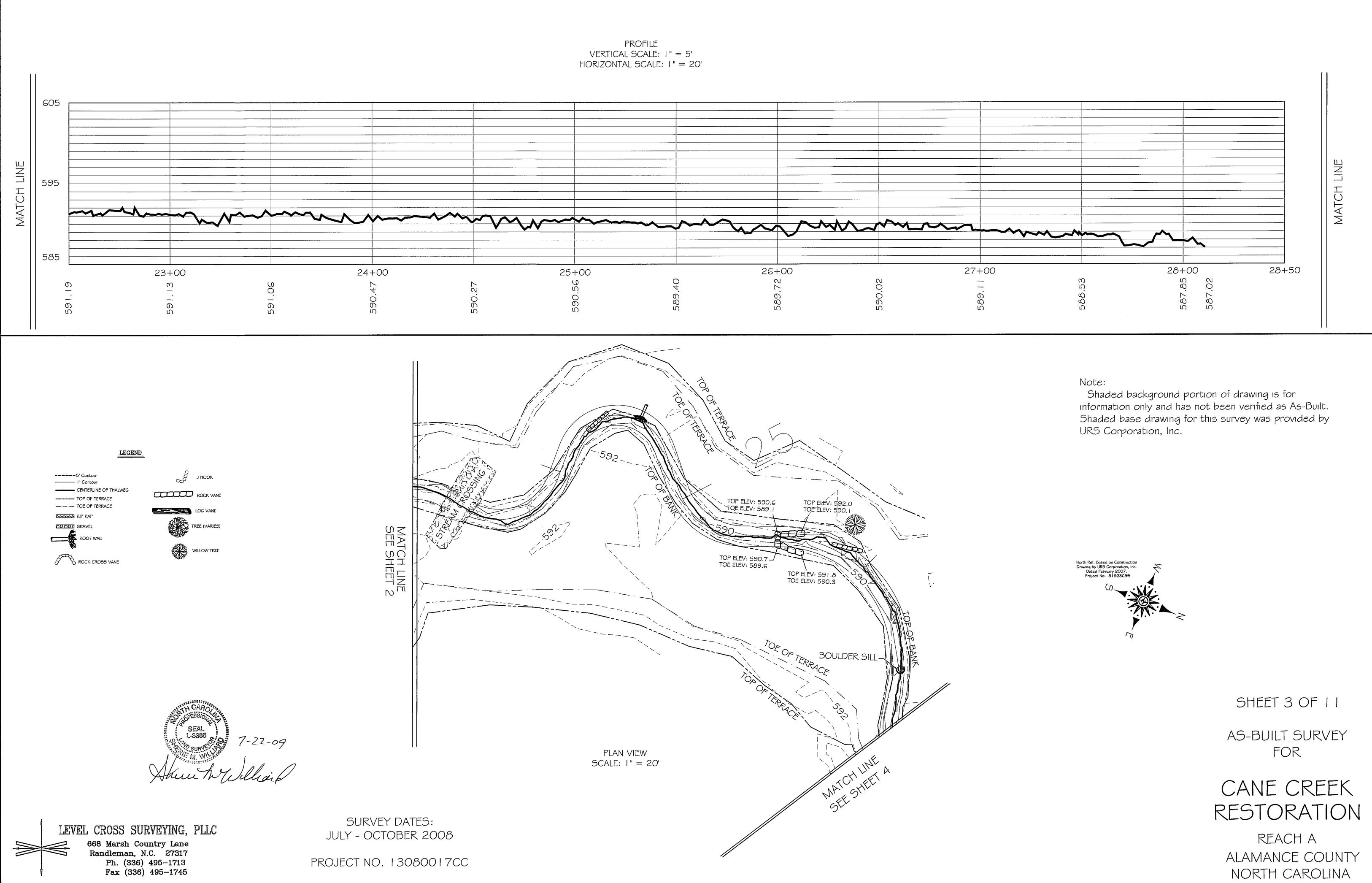

AS-BUILT SURVEY PREPARED BY

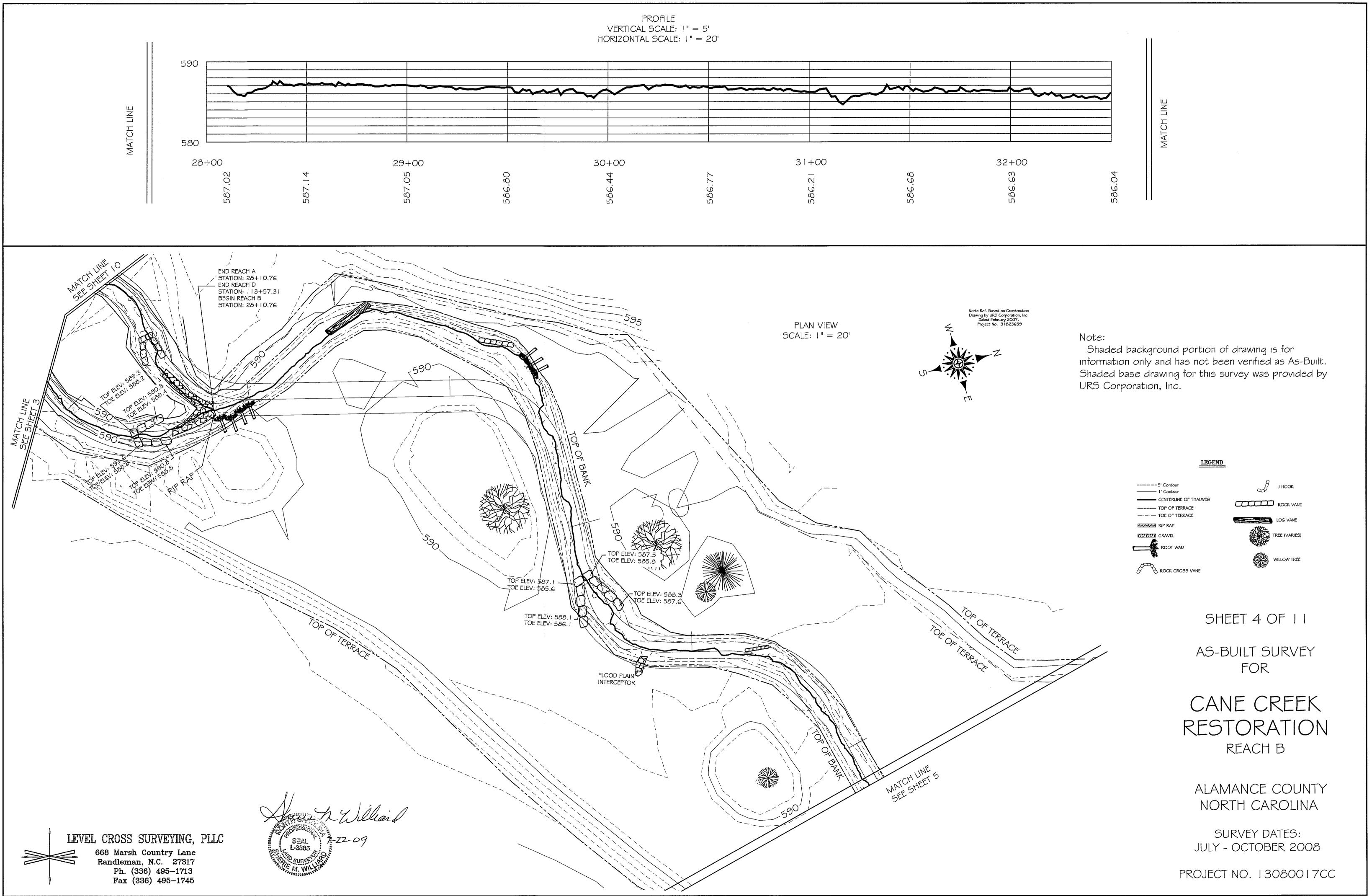

LEVEL CROSS SURVEYING, PLLC 668 MARSH COUNTY LANE RANDLEMAN, NC 23717 CONTACT: SHERI WILLARD, PLS PHONE: 336-495-1713 SEALED L-3385 7-22-09

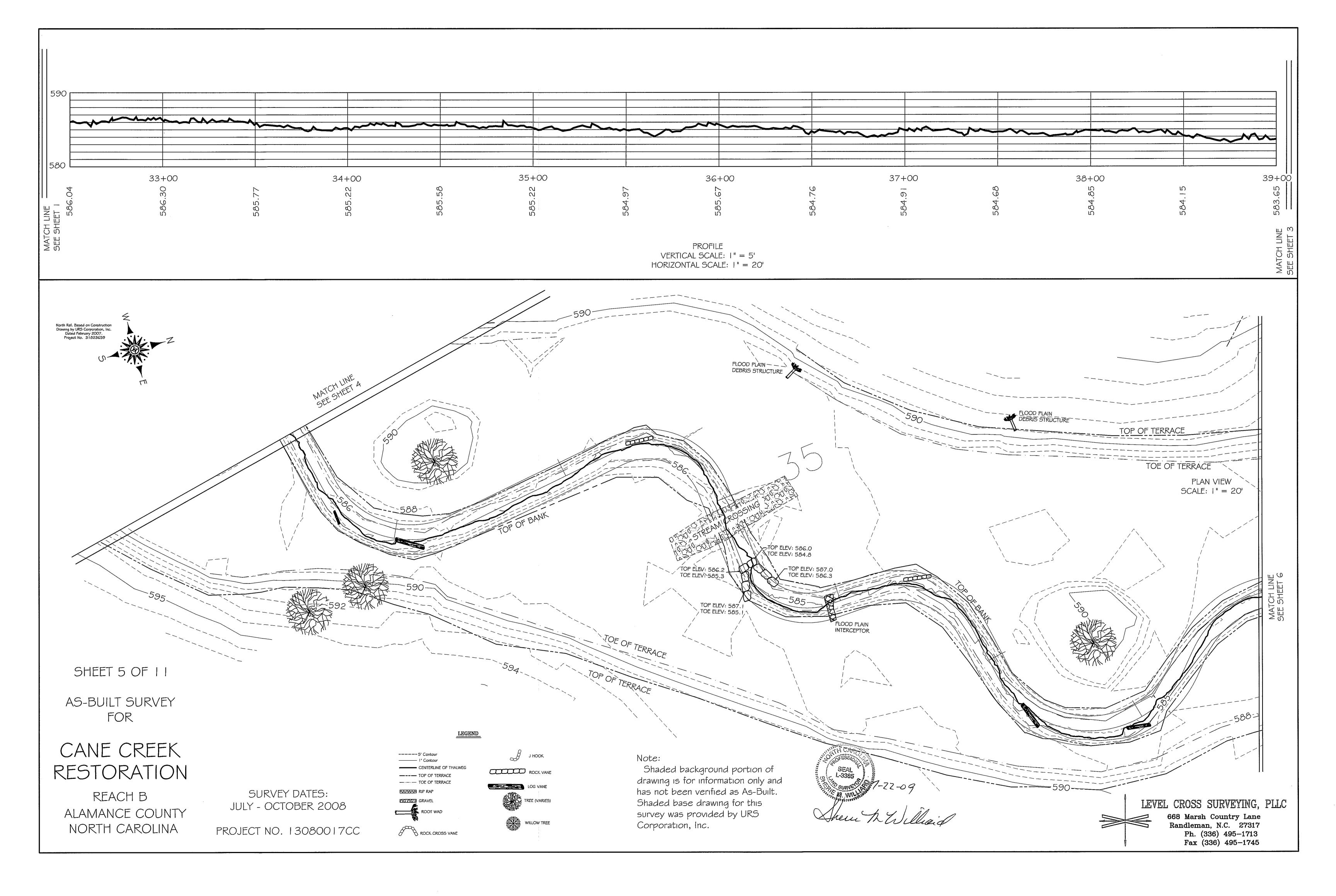


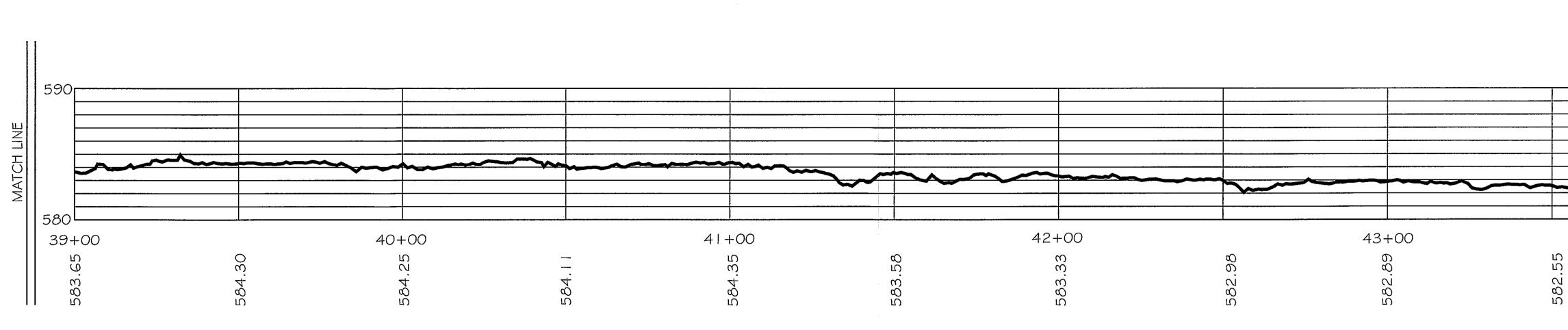


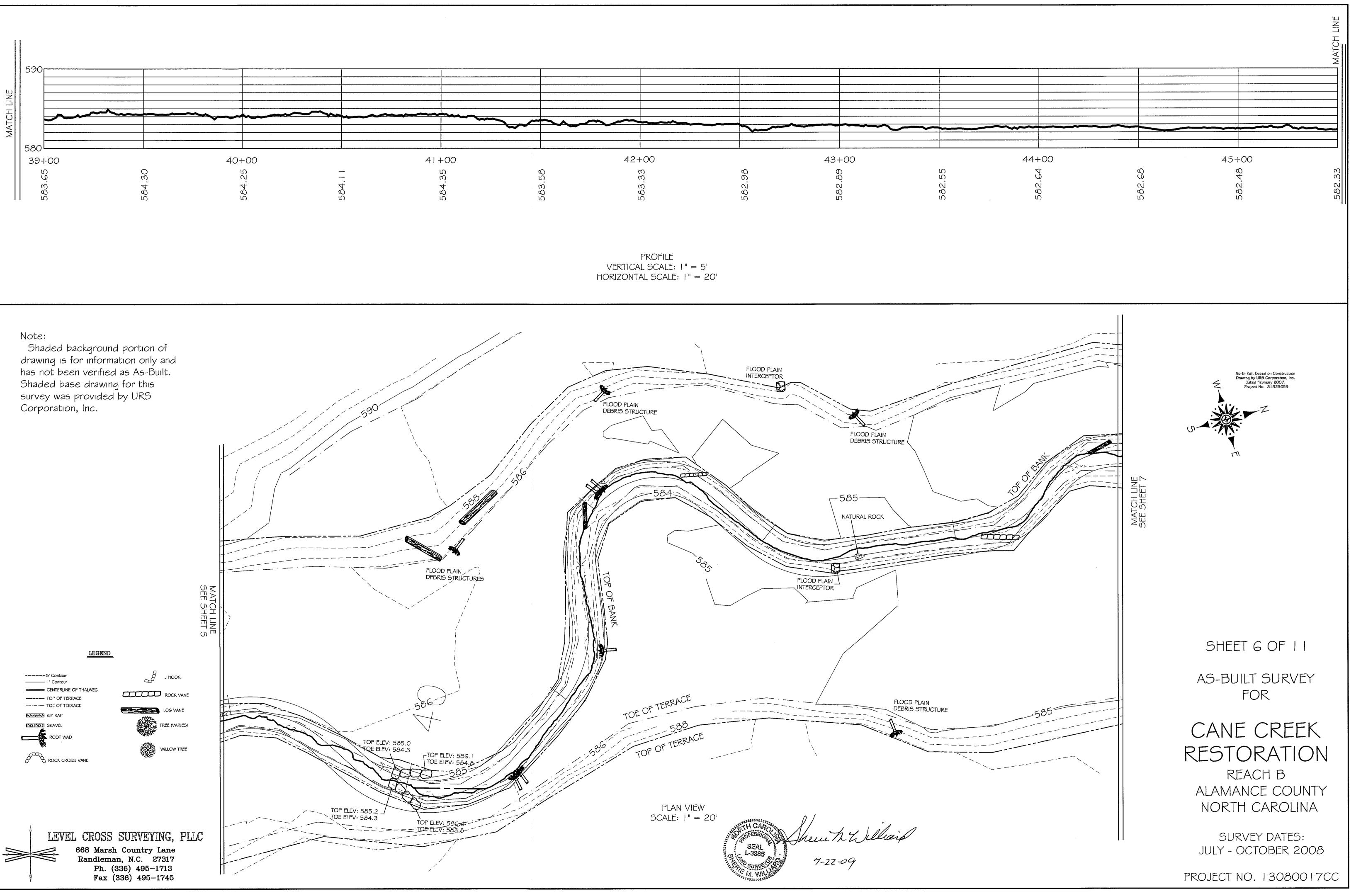


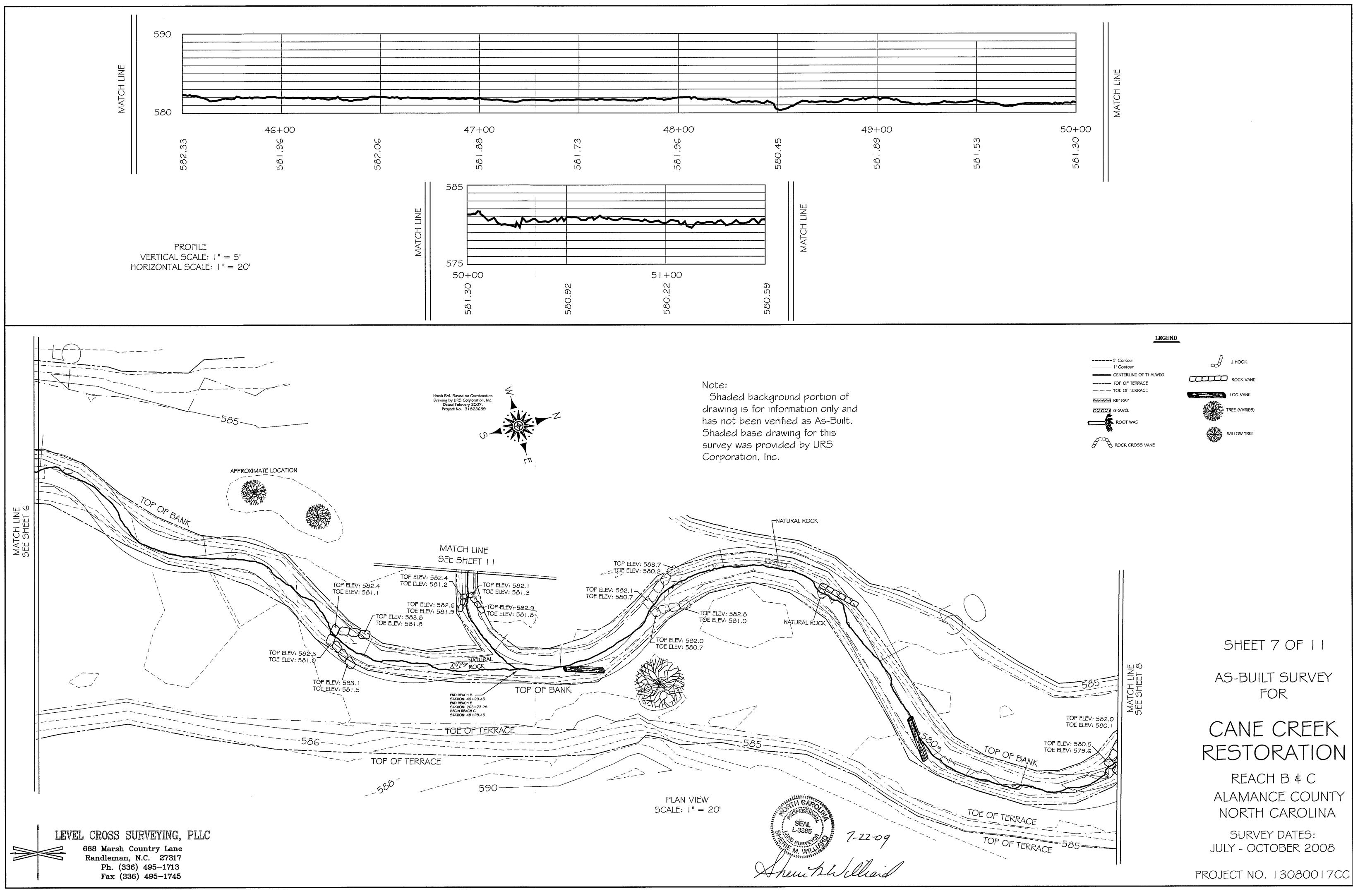


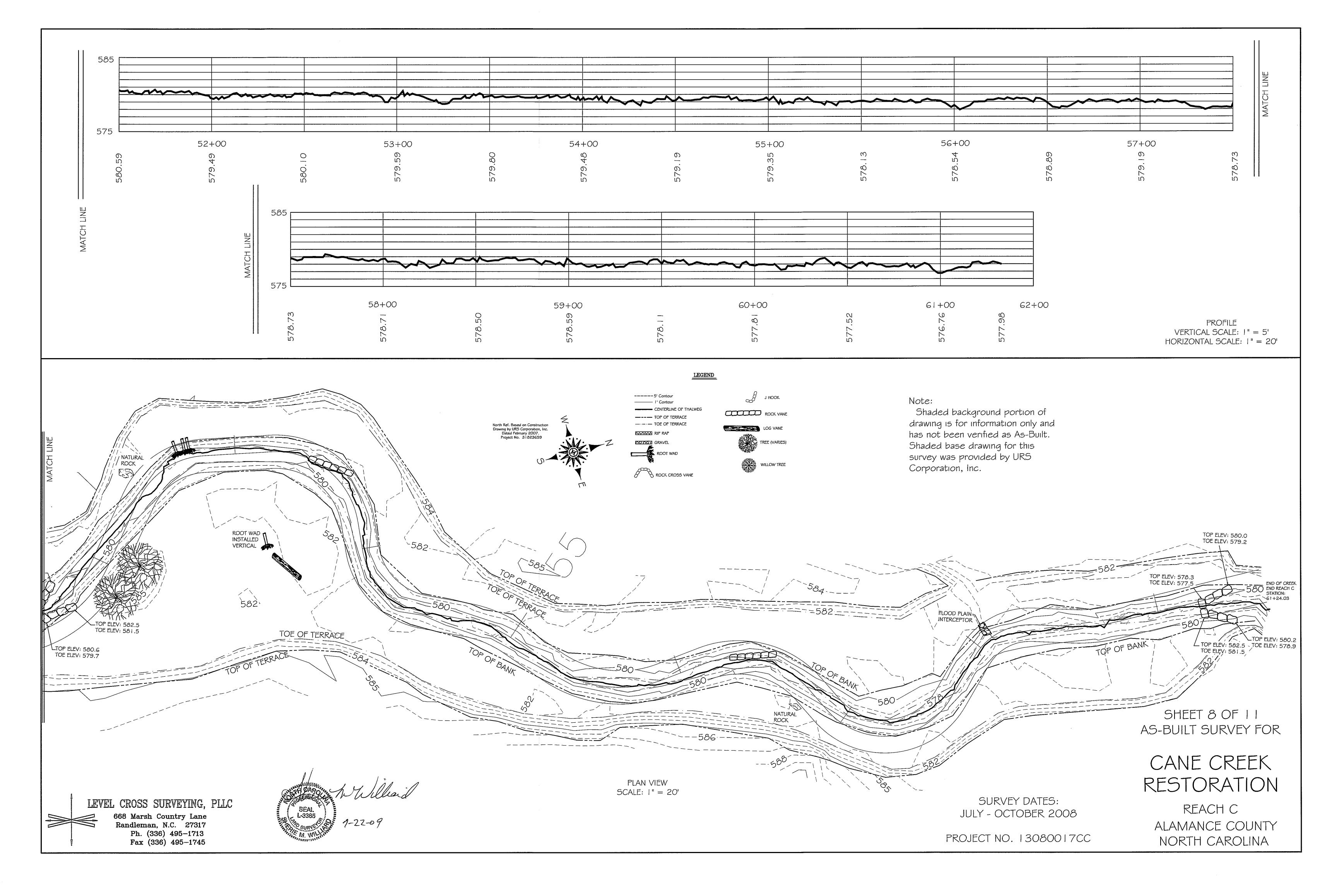


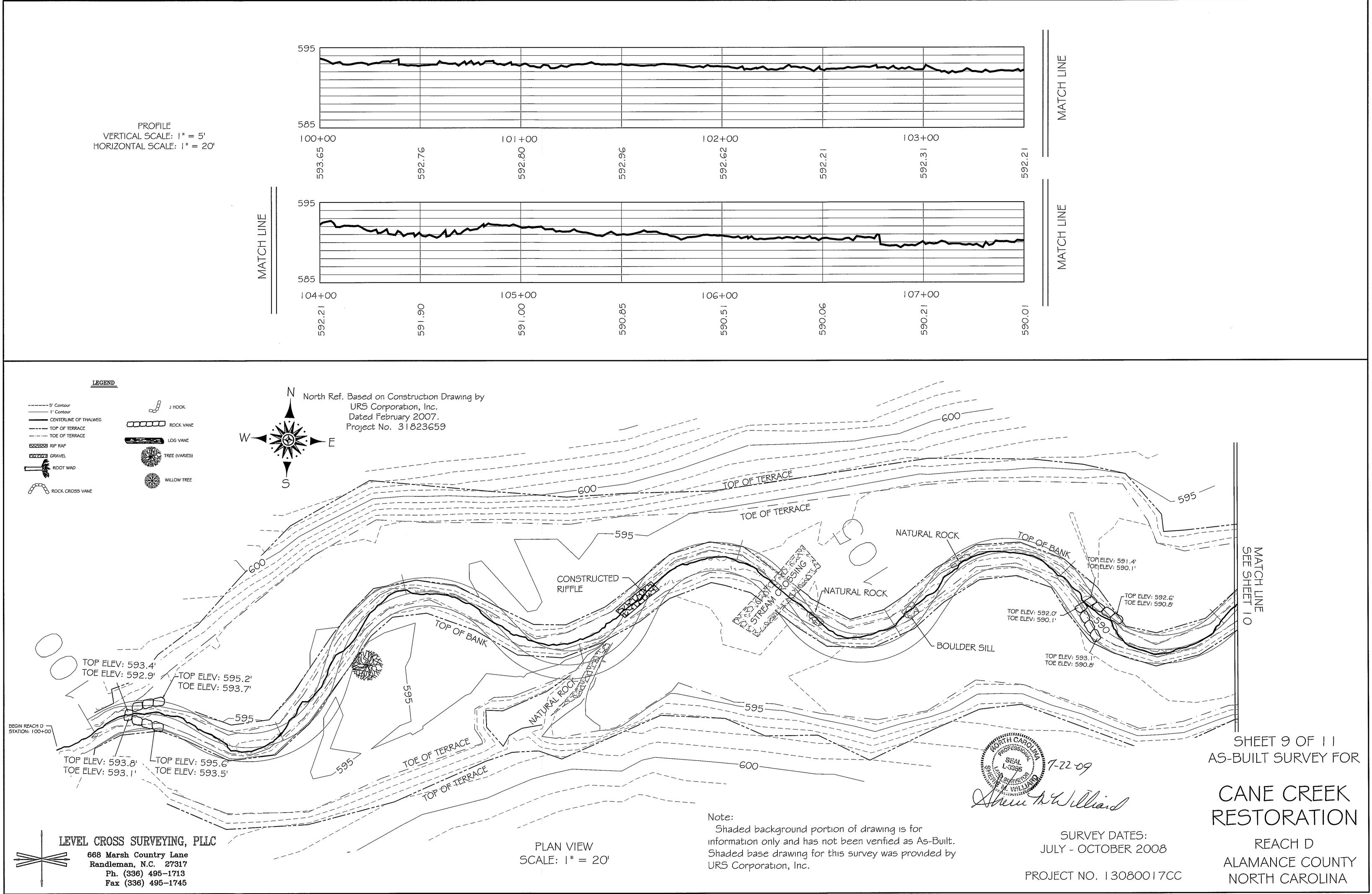


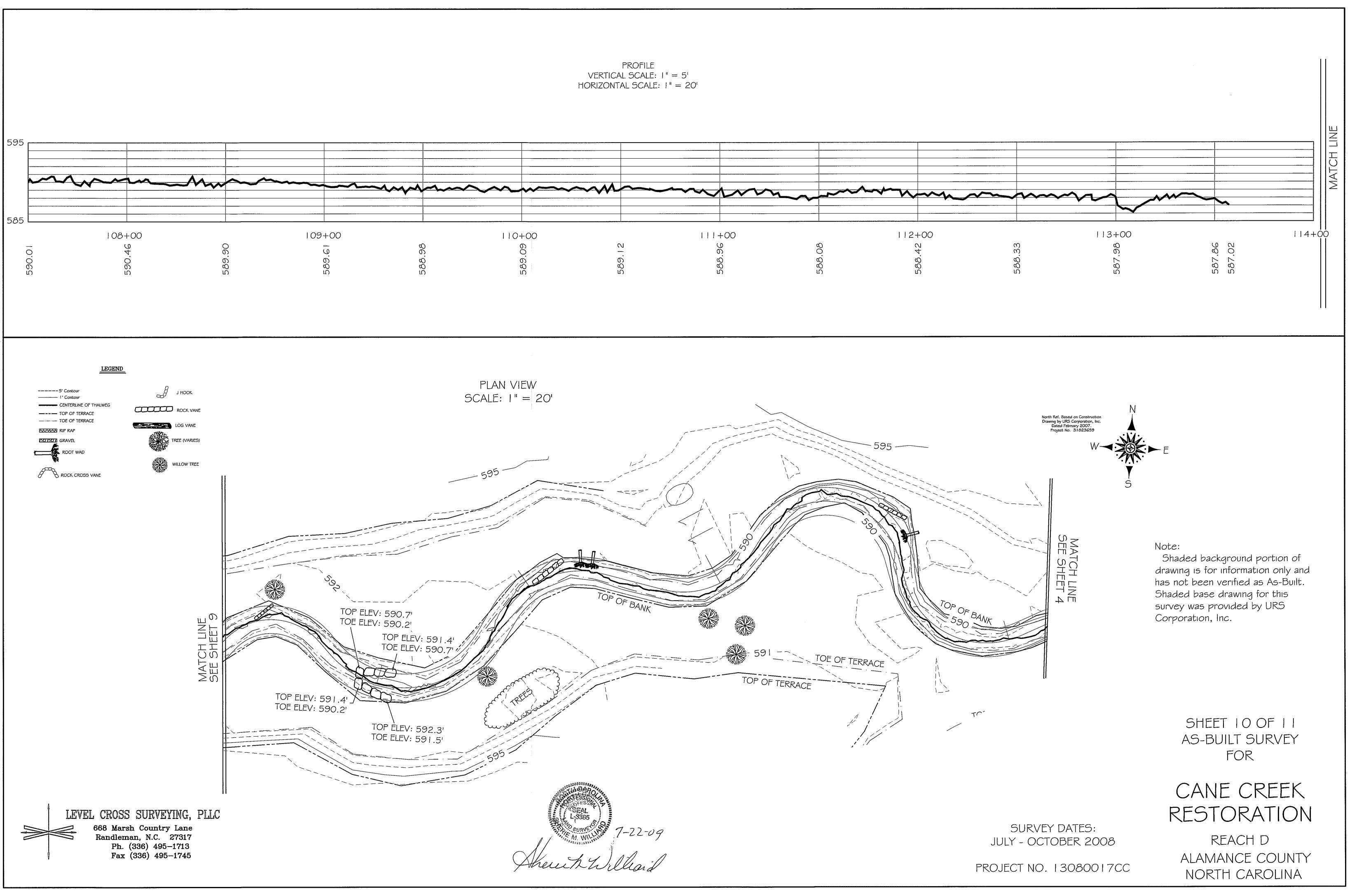


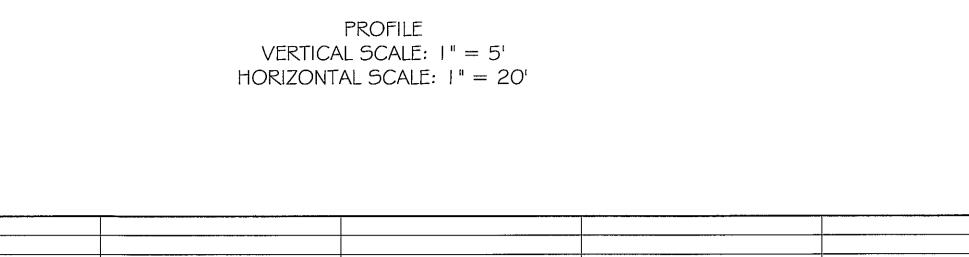


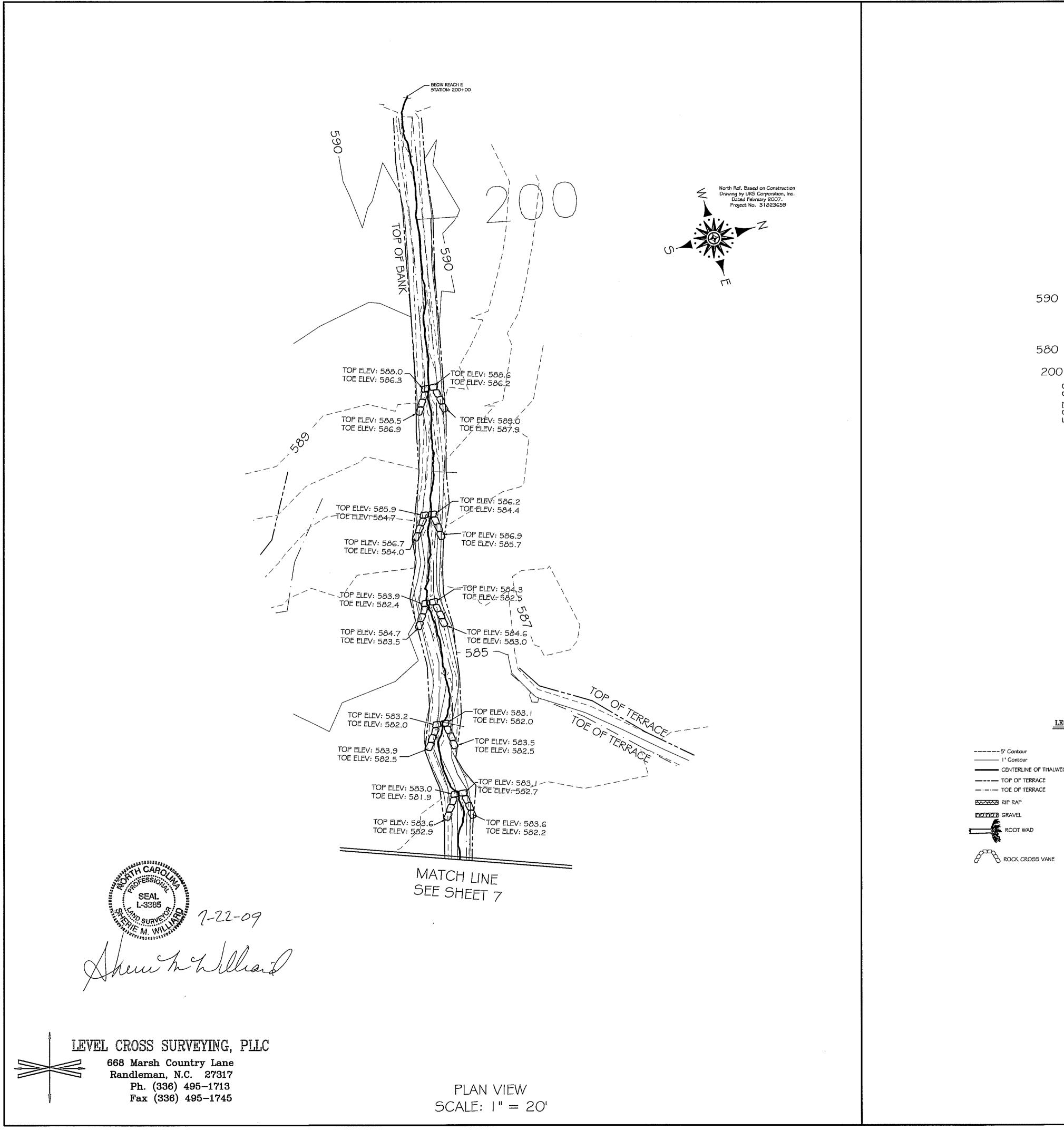


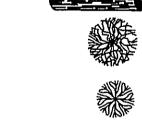


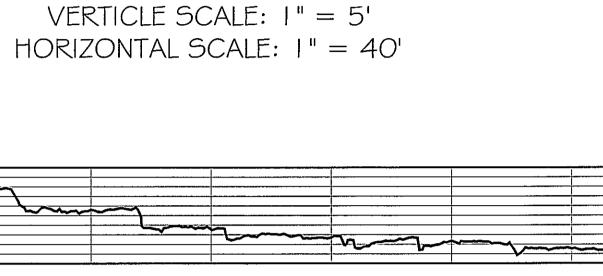




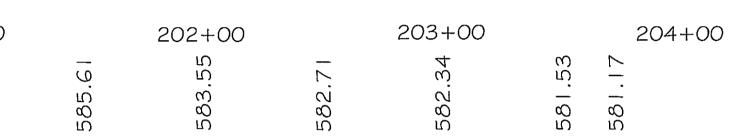







200+00 201+00 82 99 ∞ 87 88 87 ហ S S

о J ноок LOG VANE TREE (VARIES)



LEGEND

PROFILE

Note:

Shaded background portion of drawing is for information only and has not been verified as As-Built.

Shaded base drawing for this survey was provided by URS Corporation, Inc.

SHEET II OF II

AS-BUILT SURVEY FOR

SURVEY DATES: JULY - OCTOBER 2008

PROJECT NO. 13080017CC

ALAMANCE COUNTY NORTH CAROLINA